MySQL InnoDB引擎

InnoDB的逻辑存储结构如下图所示:

image

  1. 表空间

表空间是InnoDB存储引擎逻辑结构的最高层, 如果用户启用了参数 innodb_file_per_table(在8.0版本中默认开启) ,则每张表都会有一个表空间(xxx.ibd),一个mysql实例可以对应多个表空间,用于存储记录、索引等数据。

段,分为数据段(Leaf node segment)、索引段(Non-leaf node segment)、回滚段(Rollback segment),InnoDB是索引组织表,数据段就是B+树的叶子节点, 索引段即为B+树的非叶子节点。段用来管理多个Extent(区)。

区,表空间的单元结构,每个区的大小为1M。 默认情况下, InnoDB存储引擎页大小为16K, 即一个区中一共有64个连续的页。

页,是InnoDB 存储引擎磁盘管理的最小单元,每个页的大小默认为 16KB。为了保证页的连续性,InnoDB 存储引擎每次从磁盘申请 4-5 个区。

行,InnoDB 存储引擎数据是按行进行存放的。

在行中,默认有两个隐藏字段:

  • Trx_id:每次对某条记录进行改动时,都会把对应的事务id赋值给trx_id隐藏列。
  • Roll_pointer:每次对某条引记录进行改动时,都会把旧的版本写入到undo日志中,然后这个隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。

20221103150955

架构

概述

MySQL5.5 版本开始,默认使用InnoDB存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发中使用非常广泛。下面是InnoDB架构图,左侧为内存结构,右侧为磁盘结构。

image

内存架构

image

在左侧的内存结构中,主要分为这么四大块儿: Buffer Pool、Change Buffer、Adaptive Hash Index、Log Buffer。 下来介绍一下这四个部分。

  1. Buffer Pool

InnoDB存储引擎基于磁盘文件存储,访问物理硬盘和在内存中进行访问,速度相差很大,为了尽可能弥补这两者之间的I/O效率的差值,就需要把经常使用的数据加载到缓冲池中,避免每次访问都进行磁盘I/O。

在InnoDB的缓冲池中不仅缓存了索引页和数据页,还包含了undo页、插入缓存、自适应哈希索引以及InnoDB的锁信息等等。

缓冲池 Buffer Pool,是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时,先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存),然后再以一定频率刷新到磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以Page页为单位,底层采用链表数据结构管理Page。根据状态,将Page分为三种类型:

  • free page:空闲page,未被使用。
  • clean page:被使用page,数据没有被修改过。
  • dirty page:脏页,被使用page,数据被修改过,也中数据与磁盘的数据产生了不一致。

在专用服务器上,通常将多达80%的物理内存分配给缓冲池 。参数设置: show variables like 'innodb_buffer_pool_size';

1
2
3
4
5
6
7
mysql> show variables like 'innodb_buffer_pool_size';
+-------------------------+-----------+
| Variable_name | Value |
+-------------------------+-----------+
| innodb_buffer_pool_size | 134217728 |
+-------------------------+-----------+
1 row in set (0.00 sec)
  1. Change Buffer

Change Buffer,更改缓冲区(针对于非唯一二级索引页),在执行DML语句时,如果这些数据Page没有在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在更改缓冲区 Change Buffer中,在未来数据被读取时,再将数据合并恢复到Buffer Pool中,再将合并后的数据刷新到磁盘中。

Change Buffer的意义是什么呢?

先来看一幅图,这个是二级索引的结构图:

image

与聚集索引不同,二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引。同样,删除和更新可能会影响索引树中不相邻的二级索引页,如果每一次都操作磁盘,会造成大量的磁盘IO。有了ChangeBuffer之后,我们可以在缓冲池中进行合并处理,减少磁盘IO

  1. Adaptive Hash Index

自适应hash索引,用于优化对Buffer Pool数据的查询。MySQL的innoDB引擎中虽然没有直接支持hash索引,但是给我们提供了一个功能就是这个自适应hash索引。因为前面我们讲到过,hash索引在进行等值匹配时,一般性能是要高于B+树的,因为hash索引一般只需要一次IO即可,而B+树,可能需要几次匹配,所以hash索引的效率要高,但是hash索引又不适合做范围查询、模糊匹配等。

InnoDB存储引擎会监控对表上各索引页的查询,如果观察到在特定的条件下hash索引可以提升速度,则建立hash索引,称之为自适应hash索引。

自适应哈希索引,无需人工干预,是系统根据情况自动完成

参数: adaptive_hash_index

  1. Log Buffer

Log Buffer:日志缓冲区,用来保存要写入到磁盘中的log日志数据(redo log 、undo log),默认大小为 16MB,日志缓冲区的日志会定期刷新到磁盘中。如果需要更新、插入或删除许多行的事务,增加日志缓冲区的大小可以节省磁盘 I/O。

参数:

innodb_log_buffer_size:缓冲区大小

innodb_flush_log_at_trx_commit:日志刷新到磁盘时机,取值主要包含以下三个:

1:日志在每次事务提交时写入并刷新到磁盘,默认值。

0:每秒将日志写入并刷新到磁盘一次。

2:日志在每次事务提交后写入,并每秒刷新到磁盘一次。

1
2
3
4
5
6
7
mysql> show variables like 'innodb_flush_log_at_trx_commit';
+--------------------------------+-------+
| Variable_name | Value |
+--------------------------------+-------+
| innodb_flush_log_at_trx_commit | 1 |
+--------------------------------+-------+
1 row in set (0.00 sec)

磁盘结构

接下来,再来看看InnoDB体系结构的右边部分,也就是磁盘结构:

image

  1. System Tablespace

系统表空间是更改缓冲区的存储区域。如果表是在系统表空间而不是每个表文件或通用表空间中创建的,它也可能包含表和索引数据。(在MySQL5.x版本中还包含InnoDB数据字典、undolog等)

参数:innodb_data_file_path

{5}
1
2
3
4
5
6
7
mysql> show variables like 'innodb_data_file_path';
+-----------------------+------------------------+
| Variable_name | Value |
+-----------------------+------------------------+
| innodb_data_file_path | ibdata1:12M:autoextend |
+-----------------------+------------------------+
1 row in set (0.00 sec)

系统表空间,默认的文件名叫 ibdata1。

  1. File-Per-Table Tablespaces

如果开启了innodb_file_per_table开关 ,则每个表的文件表空间包含单个InnoDB表的数据和索引 ,并存储在文件系统上的单个数据文件中。

开关参数:innodb_file_per_table,该参数默认开启。

{5}
1
2
3
4
5
6
7
mysql> show variables like 'innodb_file_per_table';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| innodb_file_per_table | ON |
+-----------------------+-------+
1 row in set (0.00 sec)

那也就是说,我们每创建一个表,都会产生一个表空间文件,如图:

image

  1. General Tablespaces

通用表空间,需要通过 CREATE TABLESPACE 语法创建通用表空间,在创建表时,可以指定该表空间。

A. 创建表空间

1
CREATE TABLESPACE ts_name ADD DATAFILE 'file_name' ENGINE = engine_name;
1
2
mysql> CREATE TABLESPACE ts_itheima ADD DATAFILE 'myitheima.ibd' ENGINE = innodb;
Query OK, 0 rows affected (0.00 sec)

B. 创建表时指定表空间

1
CREATE TABLE xxx ... TABLESPACE ts_name;
1
2
mysql> create table a(id int primary key auto_increment,name varchar(10)) engine=innodb tablespace ts_itheima;
Query OK, 0 rows affected (0.01 sec)
  1. Undo Tablespaces

撤销表空间,MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16M),用于存储 undo log日志。

  1. Temporary Tablespaces

InnoDB 使用会话临时表空间和全局临时表空间。存储用户创建的临时表等数据。

  1. Doublewrite Buffer Files

双写缓冲区,innoDB引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入双写缓冲区文件中,便于系统异常时恢复数据。

  1. Redo Log

重做日志,是用来实现事务的持久性。该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都会存到该日志中, 用于在刷新脏页到磁盘时,发生错误时, 进行数据恢复使用。

以循环方式写入重做日志文件,涉及两个文件:

1
2
-rw-r-----. 1 mysql mysql  50331648 10月  2 22:52 ib_logfile0
-rw-r-----. 1 mysql mysql 50331648 10月 2 22:52 ib_logfile1

前面我们介绍了InnoDB的内存结构,以及磁盘结构,那么内存中我们所更新的数据,又是如何到磁盘中的呢? 此时,就涉及到一组后台线程,接下来,就来介绍一些InnoDB中涉及到的后台线程。

image

后台线程

image

在InnoDB的后台线程中,分为4类,分别是:Master Thread 、IO Thread、Purge Thread、Page Cleaner Thread。

  1. Master Thread

核心后台线程,负责调度其他线程,还负责将缓冲池中的数据异步刷新到磁盘中, 保持数据的一致性,还包括脏页的刷新、合并插入缓存、undo页的回收 。

  1. IO Thread

在InnoDB存储引擎中大量使用了AIO来处理IO请求, 这样可以极大地提高数据库的性能,而IOThread主要负责这些IO请求的回调。

线程类型默认个数职责
Read thread4负责读操作
Write thread4负责写操作
Log thread1负责将日志缓冲区刷新到磁盘
Insert buffer thread1负责将写缓冲区内容刷新到磁盘

我们可以通过以下的这条指令,查看到InnoDB的状态信息,其中就包含IO Thread信息。

1
show engine innodb status;

image

  1. 0Purge Thread

主要用于回收事务已经提交了的undo log,在事务提交之后,undo log可能不用了,就用它来回收。

  1. Page Cleaner Thread

协助 Master Thread 刷新脏页到磁盘的线程,它可以减轻 Master Thread 的工作压力,减少阻塞。

事务原理

事务基础

  1. 事务

事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

  1. 特性
  • 原子性(Atomicity):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。
  • 一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。
  • 隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。
  • 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。

那实际上,我们研究事务的原理,就是研究MySQL的InnoDB引擎是如何保证事务的这四大特性的。

image

而对于这四大特性,实际上分为两个部分。 其中的原子性、一致性、持久化,实际上是由InnoDB中的两份日志来保证的,一份是redo log日志,一份是undo log日志。 而持久性是通过数据库的锁,加上MVCC来保证的。

image

我们在讲解事务原理的时候,主要就是来研究一下redolog,undolog以及MVCC。

redo log重做日志

重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性

该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中, 用于在刷新脏页到磁盘,发生错误时, 进行数据恢复使用。

如果没有redolog,可能会存在什么问题的? 我们一起来分析一下。

我们知道,在InnoDB引擎中的内存结构中,主要的内存区域就是缓冲池,在缓冲池中缓存了很多的数据页。 当我们在一个事务中,执行多个增删改的操作时,InnoDB引擎会先操作缓冲池中的数据,如果缓冲区没有对应的数据,会通过后台线程将磁盘中的数据加载出来,存放在缓冲区中,然后将缓冲池中的数据修改,修改后的数据页我们称为脏页。 而脏页则会在一定的时机,通过后台线程刷新到磁盘中,从而保证缓冲区与磁盘的数据一致。 而缓冲区的脏页数据并不是实时刷新的,而是一段时间之后将缓冲区的数据刷新到磁盘中,假如刷新到磁盘的过程出错了,而提示给用户事务提交成功,而数据却没有持久化下来,这就出现问题了,没有保证事务的持久性。

image

那么,如何解决上述的问题呢? 在InnoDB中提供了一份日志 redo log,接下来我们再来分析一下,通过redolog如何解决这个问题。

image

有了redolog之后,当对缓冲区的数据进行增删改之后,会首先将操作的数据页的变化,记录在redo log buffer中。在事务提交时,会将redo log buffer中的数据刷新到redo log磁盘文件中。过一段时间之后,如果刷新缓冲区的脏页到磁盘时,发生错误,此时就可以借助于redo log进行数据恢复,这样就保证了事务的持久性。 而如果脏页成功刷新到磁盘 或 或者涉及到的数据已经落盘,此时redolog就没有作用了,就可以删除了,所以存在的两个redolog文件是循环写的。

那为什么每一次提交事务,要刷新redo log 到磁盘中呢,而不是直接将buffer pool中的脏页刷新到磁盘呢 ?

因为在业务操作中,我们操作数据一般都是随机读写磁盘的,而不是顺序读写磁盘。 而redo log在往磁盘文件中写入数据,由于是日志文件,所以都是顺序写的。顺序写的效率,要远大于随机写。 这种先写日志的方式,称之为 WAL(Write-Ahead Logging)

undo log回滚日志

回滚日志,用于记录数据被修改前的信息 , 实现事务的原子性,作用包含两个 : 提供回滚(保证事务的原子性) 和MVCC(多版本并发控制) 。

undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undolog中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的update记录。当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

Undo log销毁:undo log在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些日志可能还用于MVCC。

Undo log存储:undo log采用段的方式进行管理和记录,存放在前面介绍的 rollback segment回滚段中,内部包含1024个undo log segment。

MVCC(Multi-Version Concurrency Control,多版本并发控制)

基本概念

  1. 当前读

读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。对于我们日常的操作,如:select ... lock in share mode(共享锁),select ...for updateupdateinsertdelete(排他锁)都是一种当前读。

测试:

image

在测试中我们可以看到,即使是在默认的RR隔离级别下,事务A中依然可以读取到事务B最新提交的内容,因为在查询语句后面加上了 lock in share mode 共享锁,此时是当前读操作。当然,当我们加排他锁的时候,也是当前读操作。

  1. 快照读

简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁,是非阻塞读。

  • Read Committed:每次select,都生成一个快照读。
  • Repeatable Read:开启事务后第一个select语句才是快照读的地方。
  • Serializable:快照读会退化为当前读。

测试:

image

在测试中,我们看到即使事务B提交了数据,事务A中也查询不到。 原因就是因为普通的select是快照读,而在当前默认的RR隔离级别下,开启事务后第一个select语句才是快照读的地方,后面执行相同的select语句都是从快照中获取数据,可能不是当前的最新数据,这样也就保证了可重复读。

  1. MVCC

全称 Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本,使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能。MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undo log日志、readView。

接下来,我们再来介绍一下InnoDB引擎的表中涉及到的隐藏字段 、undolog 以及 readview,从而来介绍一下MVCC的原理。

隐藏字段

介绍

image

当我们创建了上面的这张表,我们在查看表结构的时候,就可以显式的看到这三个字段。 实际上除了这三个字段以外,InnoDB还会自动的给我们添加三个隐藏字段及其含义分别是:

隐藏字段含义
DB_TRX_ID最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID。
DB_ROLL_PTR回滚指针,指向这条记录的上一个版本,用于配合undo log,指向上一个版本。
DB_ROW_ID隐藏主键,如果表结构没有指定主键,将会生成该隐藏字段。

而上述的前两个字段是肯定会添加的, 是否添加最后一个字段DB_ROW_ID,得看当前表有没有主键,如果有主键,则不会添加该隐藏字段。

测试

  1. 查看有主键的表 stu

进入服务器中的 /var/lib/mysql/MySQL_Advanced/ , 查看stu的表结构信息, 通过如下指令:

1
ibd2sdi stu.ibd

查看到的表结构信息中,有一栏 columns,在其中我们会看到处理我们建表时指定的字段以外,还有额外的两个字段 分别是:DB_TRX_ID 、 DB_ROLL_PTR ,因为该表有主键,所以没有DB_ROW_ID隐藏字段。

{2,40}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"columns":[
{
"name": "DB_TRX_ID",
"type": 10,
"is_nullable": false,
"is_zerofill": false,
"is_unsigned": false,
"is_auto_increment": false,
"is_virtual": false,
"hidden": 2,
"ordinal_position": 4,
"char_length": 6,
"numeric_precision": 0,
"numeric_scale": 0,
"numeric_scale_null": true,
"datetime_precision": 0,
"datetime_precision_null": 1,
"has_no_default": false,
"default_value_null": true,
"srs_id_null": true,
"srs_id": 0,
"default_value": "",
"default_value_utf8_null": true,
"default_value_utf8": "",
"default_option": "",
"update_option": "",
"comment": "",
"generation_expression": "",
"generation_expression_utf8": "",
"options": "",
"se_private_data": "table_id=1074;",
"engine_attribute": "",
"secondary_engine_attribute": "",
"column_key": 1,
"column_type_utf8": "",
"elements": [],
"collation_id": 63,
"is_explicit_collation": false
},
{
"name": "DB_ROLL_PTR",
"type": 9,
"is_nullable": false,
"is_zerofill": false,
"is_unsigned": false,
"is_auto_increment": false,
"is_virtual": false,
"hidden": 2,
"ordinal_position": 5,
"char_length": 7,
"numeric_precision": 0,
"numeric_scale": 0,
"numeric_scale_null": true,
"datetime_precision": 0,
"datetime_precision_null": 1,
"has_no_default": false,
"default_value_null": true,
"srs_id_null": true,
"srs_id": 0,
"default_value": "",
"default_value_utf8_null": true,
"default_value_utf8": "",
"default_option": "",
"update_option": "",
"comment": "",
"generation_expression": "",
"generation_expression_utf8": "",
"options": "",
"se_private_data": "table_id=1074;",
"engine_attribute": "",
"secondary_engine_attribute": "",
"column_key": 1,
"column_type_utf8": "",
"elements": [],
"collation_id": 63,
"is_explicit_collation": false
}
  1. 查看没有主键的表 employee

建表语句:

1
create table employee (id int , name varchar(10));

此时,我们再通过以下指令来查看表结构及其其中的字段信息:

1
ibd2sdi employee.ibd

查看到的表结构信息中,有一栏 columns,在其中我们会看到处理我们建表时指定的字段以外,还有额外的三个字段 分别是:DB_TRX_ID 、 DB_ROLL_PTR 、DB_ROW_ID,因为employee表是没有指定主键的。

{2,40,78}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    {
"name": "DB_ROW_ID",
"type": 10,
"is_nullable": false,
"is_zerofill": false,
"is_unsigned": false,
"is_auto_increment": false,
"is_virtual": false,
"hidden": 2,
"ordinal_position": 3,
"char_length": 6,
"numeric_precision": 0,
"numeric_scale": 0,
"numeric_scale_null": true,
"datetime_precision": 0,
"datetime_precision_null": 1,
"has_no_default": false,
"default_value_null": true,
"srs_id_null": true,
"srs_id": 0,
"default_value": "",
"default_value_utf8_null": true,
"default_value_utf8": "",
"default_option": "",
"update_option": "",
"comment": "",
"generation_expression": "",
"generation_expression_utf8": "",
"options": "",
"se_private_data": "table_id=1076;",
"engine_attribute": "",
"secondary_engine_attribute": "",
"column_key": 1,
"column_type_utf8": "",
"elements": [],
"collation_id": 63,
"is_explicit_collation": false
},
{
"name": "DB_TRX_ID",
"type": 10,
"is_nullable": false,
"is_zerofill": false,
"is_unsigned": false,
"is_auto_increment": false,
"is_virtual": false,
"hidden": 2,
"ordinal_position": 4,
"char_length": 6,
"numeric_precision": 0,
"numeric_scale": 0,
"numeric_scale_null": true,
"datetime_precision": 0,
"datetime_precision_null": 1,
"has_no_default": false,
"default_value_null": true,
"srs_id_null": true,
"srs_id": 0,
"default_value": "",
"default_value_utf8_null": true,
"default_value_utf8": "",
"default_option": "",
"update_option": "",
"comment": "",
"generation_expression": "",
"generation_expression_utf8": "",
"options": "",
"se_private_data": "table_id=1076;",
"engine_attribute": "",
"secondary_engine_attribute": "",
"column_key": 1,
"column_type_utf8": "",
"elements": [],
"collation_id": 63,
"is_explicit_collation": false
},
{
"name": "DB_ROLL_PTR",
"type": 9,
"is_nullable": false,
"is_zerofill": false,
"is_unsigned": false,
"is_auto_increment": false,
"is_virtual": false,
"hidden": 2,
"ordinal_position": 5,
"char_length": 7,
"numeric_precision": 0,
"numeric_scale": 0,
"numeric_scale_null": true,
"datetime_precision": 0,
"datetime_precision_null": 1,
"has_no_default": false,
"default_value_null": true,
"srs_id_null": true,
"srs_id": 0,
"default_value": "",
"default_value_utf8_null": true,
"default_value_utf8": "",
"default_option": "",
"update_option": "",
"comment": "",
"generation_expression": "",
"generation_expression_utf8": "",
"options": "",
"se_private_data": "table_id=1076;",
"engine_attribute": "",
"secondary_engine_attribute": "",
"column_key": 1,
"column_type_utf8": "",
"elements": [],
"collation_id": 63,
"is_explicit_collation": false
}
],

undolog

介绍

回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志。

当insert的时候,产生的undo log日志只在回滚时需要,在事务提交后,可被立即删除。

而update、delete的时候,产生的undo log日志不仅在回滚时需要,在快照读时也需要,不会立即被删除。

版本链

有一张表原始数据为:

image

DB_TRX_ID : 代表最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID,是自增的。

DB_ROLL_PTR: 由于这条数据是才插入的,没有被更新过,所以该字段值为null。

然后,有四个并发事务同时在访问这张表。

A. 第一步

image

当事务2执行第一条修改语句时,会记录undo log日志,记录数据变更之前的样子; 然后更新记录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

image

B.第二步

image

当事务3执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

image

C. 第三步

image

当事务4执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

image

最终我们发现,不同事务或相同事务对同一条记录进行修改,会导致该记录的undolog生成一条记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。

readview

ReadView(读视图)是 快照读 SQL执行时MVCC提取数据的依据,记录并维护系统当前活跃的事务(未提交的)id。

ReadView中包含了四个核心字段:

字段含义
m_ids当前活跃的事务ID集合
min_trx_id最小活跃事务ID
max_trx_id预分配事务ID,当前最大事务ID+1(因为事务ID是自增的)
creator_trx_idReadView创建者的事务ID

而在readview中就规定了版本链数据的访问规则:

trx_id 代表当前undolog版本链对应事务ID。

条件是否可以访问说明
trx_id == creator_trx_id可以访问该版本成立,说明数据是当前这个事务更改的。
trx_id < min_trx_id可以访问该版本成立,说明数据已经提交了。
trx_id > max_trx_id不可以访问该版本成立,说明该事务是在ReadView生成后才开启。
min_trx_id <= trx_id <= max_trx_id如果trx_id不在m_ids中,是可以访问该版本的成立,说明数据已经提交。

不同的隔离级别,生成ReadView的时机不同:

  • READ COMMITTED :在事务中每一次执行快照读时生成ReadView。
  • REPEATABLE READ:仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。

原理分析

RC隔离级别

RC隔离级别下,在事务中每一次执行快照读时生成ReadView。

我们就来分析事务5中,两次快照读读取数据,是如何获取数据的?

在事务5中,查询了两次id为30的记录,由于隔离级别为Read Committed,所以每一次进行快照读都会生成一个ReadView,那么两次生成的ReadView如下。

image

那么这两次快照读在获取数据时,就需要根据所生成的ReadView以及ReadView的版本链访问规则,到undolog版本链中匹配数据,最终决定此次快照读返回的数据。

A. 先来看第一次快照读具体的读取过程:

image

在进行匹配时,会从undo log的版本链,从上到下进行挨个匹配:

  • 先匹配

    image

    这条记录,这条记录对应的trx_id为4,也就是将4带入右侧的匹配规则中。 ①不满足 ②不满足 ③不满足 ④也不满足 ,都不满足,则继续匹配undo log版本链的下一条。

  • 再匹配第二条

    image

    ,这条记录对应的trx_id为3,也就是将3带入右侧的匹配规则中。①不满足 ②不满足 ③不满足 ④也不满足 ,都不满足,则继续匹配undo log版本链的下一条。

  • 再匹配第三条

    image

    ,这条记录对应的trx_id为2,也就是将2带入右侧的匹配规则中。①不满足 ②满足 终止匹配,此次快照读,返回的数据就是版本链中记录的这条数据。

B. 再来看第二次快照读具体的读取过程:

image

在进行匹配时,会从undo log的版本链,从上到下进行挨个匹配:

  • 先匹配

    image

    这条记录,这条记录对应的trx_id为4,也就是将4带入右侧的匹配规则中。 ①不满足 ②不满足 ③不满足 ④也不满足 ,都不满足,则继续匹配undo log版本链的下一条。

  • 再匹配第二条

    image

    ,这条记录对应的trx_id为3,也就是将3带入右侧的匹配规则中。①不满足 ②满足 。终止匹配,此次快照读,返回的数据就是版本链中记录的这条数据。

RR隔离级别

RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。 而RR 是可重复读,在一个事务中,执行两次相同的select语句,查询到的结果是一样的。

那MySQL是如何做到可重复读的呢? 我们简单分析一下就知道了

image

我们看到,在RR隔离级别下,只是在事务中第一次快照读时生成ReadView,后续都是复用该ReadView,那么既然ReadView都一样, ReadView的版本链匹配规则也一样, 那么最终快照读返回的结果也是一样的。


MVCC实现原理

所以呢,MVCC的实现原理就是通过 InnoDB表的隐藏字段、UndoLog 版本链、ReadView来实现的。而MVCC + 锁,则实现了事务的隔离性。 而一致性则是由redolog 与 undolog保证。

image

Innodb引擎、MVCC和隔离级别总结

image-20221103205021302

1、事务访问存在的四个问题

  1. 脏读: 读到了别人未提交的数据,数据有可能会发生回滚,所以是脏读

  2. 可重复读: 在同一个事务中,多次读取同一条数据,读取结果是一致的,通常对应的是更新操作

  3. 不可重复读: 在同一个事务中,多次读取同一条数据,有可能读取结果是不一致的,读取到了别人更新数据

  4. 幻读: 在同一个事务中,多次读取同一条数据,有可能读取结果是不一致的,读取到了别人插入的数据

2、事务的四大特性

分别是原子性、一致性、隔离性、持久性。

1、原子性(Atomicity)

原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚,因此事务的操作如果成功就必须要完全应用到数据库,如果操作失败则不能对数据库有任何影响。

2、一致性(Consistency)

一致性是指事务必须使数据库从一个一致性状态变换到另一个一致性状态,也就是说一个事务执行之前和执行之后都必须处于一致性状态。举例来说,假设用户A和用户B两者的钱加起来一共是1000,那么不管A和B之间如何转账、转几次账,事务结束后两个用户的钱相加起来应该还得是1000,这就是事务的一致性。

3、隔离性(Isolation)

隔离性是当多个用户并发访问数据库时,比如同时操作同一张表时,数据库为每一个用户开启的事务,不能被其他事务的操作所干扰,多个并发事务之间要相互隔离。关于事务的隔离性数据库提供了多种隔离级别,稍后会介绍到。

4、持久性(Durability)

持久性是指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作。例如我们在使用JDBC操作数据库时,在提交事务方法后,提示用户事务操作完成,当我们程序执行完成直到看到提示后,就可以认定事务已经正确提交,即使这时候数据库出现了问题,也必须要将我们的事务完全执行完成。否则的话就会造成我们虽然看到提示事务处理完毕,但是数据库因为故障而没有执行事务的重大错误。这是不允许的。

3、Mysql四种隔离级别

隔离性是指在事务A中对某个数据更改的可见性或者说不被其它事务干扰。

隔离级别分为:

  • RU(read uncommited读未提交)存在脏读

  • RC(read commited读已提交)存在不可重复读,

  • RR(repeatable read可重复读)存在幻读

  • serialize(可串行读)

  • mysql默认隔离级别是: 可重复读

4、隔离级别RR和RC的区别

RC 和 RR 唯一的区别在于“是否可重复读”。在一个事务执行过程中,它能不能读到其他已提交事务对数据的更新,如果能读到数据变化,就是“不可重复读”,否则就是“可重复读”

正是Read View生成时机的不同,从而造成RC,RR级别下快照读的结果的不同:

​ 1.在RR级别下的某个事务的对某条记录的第一次快照读会创建一个快照及Read View, 将当前系统活跃的其他事务记录起来,此后在同一个事务中再次进行同一行数据进行快照读的时候,还是使用的是同一个Read View,所以只要当前事务在其他事务提交更新之前使用过快照读,那么之后的快照读使用的都是同一个Read View,所以对之后的修改不可见;而早于Read View创建的事务所做的修改均是可见

​ 2.而在RC级别下的,再同一个事务中,每次快照读都会新生成一个快照和Read View, 这就是我们在RC级别下的事务中可以看到别的事务提交的更新的原因

3.总之在RC隔离级别下,是每个快照读都会生成并获取最新的Read View;而在RR隔离级别下,则是同一个事务中的第一个快照读才会创建Read View, 之后的快照读获取的都是同一个Read View。

​ 4.RC的性能比RR好,因为他允许存在幻读和不可重复读,mysql默认的是RR隔离级别

5、Mysql的 MVCC机制

MVCCMySQL InnoDB中的实现主要是为了提高数据库并发性能,用更好的方式去处理读-写冲突,做到即使有读写冲突时,也能做到不加锁,非阻塞并发读,而这个读指的就是快照读,同时还可以解决脏读,幻读,不可重复读等事务隔离问题,但不能解决更新丢失问题

  • MVCC的作用就是在进行快照读的时候通过某种机制(MVCC)来查找历史版本

1.MySQL InnoDB下的当前读和快照读

①当前读 像select lock in share mode(共享锁), select for update ; update, insert ,delete(排他锁)这些操作都是一种当前读,为什么叫当前读?就是它读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁

②快照读 像不加锁的select操作就是快照读,即不加锁的非阻塞读;快照读的前提是隔离级别不是串行级别,串行级别下的快照读会退化成当前读;之所以出现快照读的情况,是基于提高并发性能的考虑,快照读的实现是基于多版本并发控制,即MVCC,可以认为MVCC是行锁的一个变种,但它在很多情况下,避免了加锁操作,降低了开销;既然是基于多版本,即快照读可能读到的并不一定是数据的最新版本,而有可能是之前的历史版本

2.它的实现原理主要是依赖记录中的 3个隐式字段undo日志Read View 来实现的。

3.mysql中每行数据除了我们自定义的字段外,还有3个隐式字段

DB_TRX_ID:最近修改(修改/插入)事务ID:记录创建这条记录/最后一次修改该记录的事务ID

DB_ROLL_PTR:回滚指针,指向这条记录的上一个版本(存储于rollback segment里)

DB_ROW_ID:隐含的自增ID(隐藏主键),如果数据表没有主键,InnoDB会自动以DB_ROW_ID产生一个聚簇索引

实际还有一个删除flag隐藏字段, 既记录被更新或删除并不代表真的删除,而是删除flag变了

4.undo日志:

insert undo log:代表事务在insert新记录时产生的undo log, 只在事务回滚时需要,并且在事务提交后可以被立即丢弃

update undo log:事务在进行updatedelete时产生的undo log; 不仅在事务回滚时需要,在快照读时也需要;所以不能随便删除,只有在快速读或事务回滚不涉及该日志时,对应的日志才会被purge线程统一清除

对MVCC有帮助的实质是update undo logundo log实际上就是存在rollback segment中旧记录链

5.当一个事务对当前行进行修改的时候:

①数据库会首先加一个排它锁

②在把他写到undo log日志里面

③进行数据修改,同时把隐藏的事务id加1,回滚id指向旧数据的副本记录

④事务提交后,释放锁

不同事务或者相同事务的对同一记录的修改,会导致该记录的undo log成为一条记录版本线性表,既链表,undo log的链首就是最新的旧记录,链尾就是最早的旧记录

6.read view (读视图)

Read View就是事务进行快照读操作的时候生产的读视图(Read View),在该事务执行的快照读的那一刻,会生成数据库系统当前的一个快照,记录并维护系统当前活跃事务的ID

即当我们某个事务执行快照读的时候,对该记录创建一个Read View读视图,把它比作条件用来判断当前事务能够看到哪个版本的数据

Read View遵循一个可见性算法

将要被修改的数据当前事务ID取出来与系统当前其他活跃事务的ID去对比(由Read View维护)

比如:

当前并发的所有修改事务线程都没有提交,不符合可见性,那就通过回滚指针去取出Undo Log中的DB_TRX_ID再比较,即遍历链表(即从最近的一次修改查起),直到找到满足特定条件的DB_TRX_ID, 那么这个DB_TRX_ID所在的旧记录就是当前事务能看见的最新老版本

如果当前并发的所有事务中,其中一个事务快照读前一刻提交更新了,那么这个事务提交的数据符合可见性条件.就会查询出来这条事务修改的数据.