MySQL 分库分表介绍

问题分析

随着互联网及移动互联网的发展,应用系统的数据量也是成指数式增长,若采用单数据库进行数据存储,存在以下性能瓶颈:

  1. IO瓶颈:热点数据太多,数据库缓存不足,产生大量磁盘IO,效率较低。 请求数据太多,带宽不够,网络IO瓶颈。
  2. CPU瓶颈:排序、分组、连接查询、聚合统计等SQL会耗费大量的CPU资源,请求数太多,CPU出现瓶颈。

为了解决上述问题,我们需要对数据库进行分库分表处理。

image

分库分表的中心思想都是将数据分散存储,使得单一数据库/表的数据量变小来缓解单一数据库的性能问题,从而达到提升数据库性能的目的

拆分策略

分库分表的形式,主要是两种:垂直拆分和水平拆分。而拆分的粒度,一般又分为分库和分表,所以组成的拆分策略最终如下:

垂直拆分

  1. 垂直分库

image

垂直分库:以表为依据,根据业务将不同表拆分到不同库中。

特点:

  • 每个库的表结构都不一样。
  • 每个库的数据也不一样。
  • 所有库的并集是全量数据。
  1. 垂直分表

image

垂直分表:以字段为依据,根据字段属性将不同字段拆分到不同表中。

特点:

  • 每个表的结构都不一样。
  • 每个表的数据也不一样,一般通过一列(主键/外键)关联。
  • 所有表的并集是全量数据。

水平拆分

  1. 水平分库

image

水平分库:以字段为依据,按照一定策略,将一个库的数据拆分到多个库中。

特点:

  • 每个库的表结构都一样。
  • 每个库的数据都不一样。
  • 所有库的并集是全量数据。
  1. 水平分表

image

水平分表:以字段为依据,按照一定策略,将一个表的数据拆分到多个表中。

特点:

  • 每个表的表结构都一样。
  • 每个表的数据都不一样。
  • 所有表的并集是全量数据。

在业务系统中,为了缓解磁盘IO及CPU的性能瓶颈,到底是垂直拆分,还是水平拆分;具体是分库,还是分表,都需要根据具体的业务需求具体分析。

实现技术

  • shardingJDBC:基于AOP原理,在应用程序中对本地执行的SQL进行拦截,解析、改写、路由处理。需要自行编码配置实现,只支持java语言,性能较高。
  • MyCat:数据库分库分表中间件,不用调整代码即可实现分库分表,支持多种语言,性能不及前者。

image

本次课程,我们选择了是MyCat数据库中间件,通过MyCat中间件来完成分库分表操作。

MyCat概述

介绍

Mycat是开源的、活跃的、基于Java语言编写的MySQL数据库中间件。可以像使用mysql一样来使用mycat,对于开发人员来说根本感觉不到mycat的存在。

开发人员只需要连接MyCat即可,而具体底层用到几台数据库,每一台数据库服务器里面存储了什么数据,都无需关心。 具体的分库分表的策略,只需要在MyCat中配置即可。

image

优势:

  • 性能可靠稳定
  • 强大的技术团队
  • 体系完善
  • 社区活跃

下载

下载地址:http://dl.mycat.org.cn/

安装

Mycat是采用java语言开发的开源的数据库中间件,支持Windows和Linux运行环境,下面介绍MyCat的Linux中的环境搭建。我们需要在准备好的服务器中安装如下软件。

  • MySQL
  • JDK
  • Mycat
服务器安装软件说明
192.168.91.166JDK、MycatMyCat中间件服务器
192.168.91.166MySQL分片服务器
192.168.91.167MySQL分片服务器
192.168.91.168MySQL分片服务器
  • linux-jdk安装步骤:https://frxcat.fun/pages/600247/#%E5%AE%89%E8%A3%85%E6%96%B0%E7%9A%84jdk

  • 安装Mycat

  • 使用XFTP工具将下载好的文件上传到Linux系统上。

  • 使用解压命令

1
tar -zxvf Mycat-server-1.6.7.3-release-20190828135747-linux.tar.gz -C /usr/local

目录介绍

1
2
3
4
5
6
7
8
[root@MySQL-Master mycat]# ll
总用量 12
drwxr-xr-x 2 root root 190 10月 6 11:36 bin
drwxrwxrwx 2 root root 6 7月 18 2019 catlet
drwxrwxrwx 4 root root 4096 10月 6 11:36 conf
drwxr-xr-x 2 root root 4096 10月 6 11:36 lib
drwxrwxrwx 2 root root 6 8月 28 2019 logs
-rwxrwxrwx 1 root root 227 8月 28 2019 version.txt

bin : 存放可执行文件,用于启动停止mycat

conf:存放mycat的配置文件

lib:存放mycat的项目依赖包(jar)

logs:存放mycat的日志文件

  • 由于mycat中的mysql的JDBC驱动包版本比较低,所以我们将它删去,下载8.0版本的
1
2
cd /usr/local/mycat/lib/
rm -rf mysql-connector-java-5.1.35.jar

对下载的驱动包进行授权

1
chmod 777 mysql-connector-java-8.0.22.jar

概念介绍

在MyCat的整体结构中,分为两个部分:上面的逻辑结构、下面的物理结构。

image

在MyCat的逻辑结构主要负责逻辑库、逻辑表、分片规则、分片节点等逻辑结构的处理,而具体的数据存储还是在物理结构,也就是数据库服务器中存储的。

在后面讲解MyCat入门以及MyCat分片时,还会讲到上面所提到的概念。

MyCat入门

需求

由于 tb_order 表中数据量很大,磁盘IO及容量都到达了瓶颈,现在需要对 tb_order 表进行数据分片,分为三个数据节点,每一个节点主机位于不同的服务器上, 具体的结构,参考下图:

image

环境准备

准备3台服务器:

  • 192.168.91.166:MyCat中间件服务器,同时也是第一个分片服务器。
  • 192.168.91.167:第二个分片服务器。
  • 192.168.91.168:第三个分片服务器。

image

并且在上述3台数据库中创建数据库 db01 。

配置

目录路径

1
cd /usr/local/mycat/conf/
  1. schema.xml

在schema.xml中配置逻辑库、逻辑表、数据节点、节点主机等相关信息。具体的配置如下:

{12,16,20}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<schema name="DB01" checkSQLschema="true" sqlMaxLimit="100"> <!--逻辑库-->
<table name="TB_ORDER" dataNode="dn1,dn2,dn3" rule="auto-sharding-long"/> <!--逻辑表,rule分片规则-->
</schema>
<dataNode name="dn1" dataHost="dhost1" database="db01"/> <!--数据节点,dataHost配置,database那个表-->
<dataNode name="dn2" dataHost="dhost2" database="db01"/> <!--数据节点-->
<dataNode name="dn3" dataHost="dhost3" database="db01"/> <!--数据节点-->

<dataHost name="dhost1" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100"> <!--节点主机,balance 负载均衡策略-->
<heartbeat>select user()</heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.91.166:3306?useSSL=false&amp;serverTimezone=Asia/Shanghai&amp;characterEncoding=utf8" user="root" password="123456"/>
</dataHost>

<dataHost name="dhost2" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.91.167:3306?useSSL=false&amp;serverTimezone=Asia/Shanghai&amp;characterEncoding=utf8" user="root" password="123456"/>
</dataHost>

<dataHost name="dhost3" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.91.168:3306?useSSL=false&amp;serverTimezone=Asia/Shanghai&amp;characterEncoding=utf8" user="root" password="123456"/>
</dataHost>
</mycat:schema>
  1. server.xml

需要在server.xml中配置用户名、密码,以及用户的访问权限信息,具体的配置如下:

{2-3,14-15}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
<user name="root" defaultAccount="true"> <!--能读能写(没有readOnly=true)-->
<property name="password">123456</property>
<property name="schemas">DB01</property>
<!-- 表级 DML 权限设置 -->
<!--
<privileges check="true">
<schema name="DB01" dml="0110" >
<table name="TB_ORDER" dml="1110"></table>
</schema>
</privileges>
-->
</user>
<user name="user">
<property name="password">123456</property>
<property name="schemas">DB01</property>
<property name="readOnly">true</property>
</user>

上述的配置表示,定义了两个用户 root 和 user ,这两个用户都可以访问 DB01 这个逻辑库,访问密码都是123456,但是root用户访问DB01逻辑库,既可以读,又可以写,但是 user用户访问DB01逻辑库是只读的。

details

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
<?xml version="1.0" encoding="UTF8"?>
<!DOCTYPE mycat:server SYSTEM "server.dtd">
<mycat:server xmlns:mycat="http://io.mycat/">
<system>
<property name="nonePasswordLogin">0</property>
<property name="useHandshakeV10">1</property>
<property name="useSqlStat">0</property>
<property name="useGlobleTableCheck">0</property>
<property name="sqlExecuteTimeout">300</property>
<property name="sequnceHandlerType">2</property>
<property name="sequnceHandlerPattern">(?:(\s*next\s+value\s+for\s*MYCATSEQ_(\w+))(,|\)|\s)*)+</property>
<property name="subqueryRelationshipCheck">false</property>

<property name="processorBufferPoolType">0</property>
<property name="handleDistributedTransactions">0</property>

<property name="useOffHeapForMerge">0</property>

<property name="memoryPageSize">64k</property>

<property name="spillsFileBufferSize">1k</property>

<property name="useStreamOutput">0</property>

<property name="systemReserveMemorySize">384m</property>


<property name="useZKSwitch">false</property>
<property name="strictTxIsolation">false</property>

<property name="useZKSwitch">true</property>

</system>

<user name="root" defaultAccount="true">
<property name="password">123456</property>
<property name="schemas">DB01</property>
</user>

<user name="user">
<property name="password">123456</property>
<property name="schemas">DB01</property>
<property name="readOnly">true</property>
</user>

</mycat:server>

测试

启动

配置完毕后,先启动涉及到的3台分片服务器,然后启动MyCat服务器。切换到Mycat的安装目录,执行如下指令,启动Mycat:

1
2
3
4
#启动
bin/mycat start
#停止
bin/mycat stop

Mycat启动之后,占用端口号 8066。

启动完毕之后,可以查看logs目录下的启动日志,查看Mycat是否启动完成。

1
2
3
4
5
6
7
8
9
10
11
[root@MySQL-Master mycat]# tail -10 logs/wrapper.log
STATUS | wrapper | 2022/10/06 23:08:01 | TERM trapped. Shutting down.
STATUS | wrapper | 2022/10/06 23:08:03 | <-- Wrapper Stopped
STATUS | wrapper | 2022/10/06 23:08:08 | --> Wrapper Started as Daemon
STATUS | wrapper | 2022/10/06 23:08:08 | Launching a JVM...
INFO | jvm 1 | 2022/10/06 23:08:08 | Java HotSpot(TM) 64-Bit Server VM warning: ignoring option MaxPermSize=64M; support was removed in 8.0
INFO | jvm 1 | 2022/10/06 23:08:08 | Wrapper (Version 3.2.3) http://wrapper.tanukisoftware.org
INFO | jvm 1 | 2022/10/06 23:08:08 | Copyright 1999-2006 Tanuki Software, Inc. All Rights Reserved.
INFO | jvm 1 | 2022/10/06 23:08:08 |
INFO | jvm 1 | 2022/10/06 23:08:09 | Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary.
INFO | jvm 1 | 2022/10/06 23:08:11 | MyCAT Server startup successfully. see logs in logs/mycat.log

测试

  1. 连接MyCat

通过如下指令,就可以连接并登陆MyCat。

1
mysql -h 192.168.91.166 -P 8066 -u root -p 123456
{5}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
[root@MySQL-Master ~]# mysql -h 192.168.91.166 -P 8066 -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.6.29-mycat-1.6.7.3-release-20190828215749 MyCat Server (OpenCloudDB)

Copyright (c) 2000, 2021, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

我们看到我们是通过MySQL的指令来连接的MyCat,因为MyCat在底层实际上是模拟了MySQL的协议。

  1. 数据测试

然后就可以在MyCat中来创建表,并往表结构中插入数据,查看数据在MySQL中的分布情况。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CREATE TABLE TB_ORDER (
id BIGINT(20) NOT NULL,
title VARCHAR(100) NOT NULL ,
PRIMARY KEY (id)
) ENGINE=INNODB DEFAULT CHARSET=utf8 ;
INSERT INTO TB_ORDER(id,title) VALUES(1,'goods1');
INSERT INTO TB_ORDER(id,title) VALUES(2,'goods2');
INSERT INTO TB_ORDER(id,title) VALUES(3,'goods3');

INSERT INTO TB_ORDER(id,title) VALUES(1,'goods1');
INSERT INTO TB_ORDER(id,title) VALUES(2,'goods2');
INSERT INTO TB_ORDER(id,title) VALUES(3,'goods3');
INSERT INTO TB_ORDER(id,title) VALUES(5000000,'goods5000000');
INSERT INTO TB_ORDER(id,title) VALUES(10000000,'goods10000000');
INSERT INTO TB_ORDER(id,title) VALUES(10000001,'goods10000001');
INSERT INTO TB_ORDER(id,title) VALUES(15000000,'goods15000000');
INSERT INTO TB_ORDER(id,title) VALUES(15000001,'goods15000001');
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
mysql> INSERT INTO TB_ORDER(id,title) VALUES(5000000,'goods5000000');
Query OK, 1 row affected (0.00 sec)
OK!

mysql> INSERT INTO TB_ORDER(id,title) VALUES(10000000,'goods10000000');
Query OK, 1 row affected (0.03 sec)
OK!

mysql> INSERT INTO TB_ORDER(id,title) VALUES(10000001,'goods10000001');
Query OK, 1 row affected (0.00 sec)
OK!

mysql> INSERT INTO TB_ORDER(id,title) VALUES(15000000,'goods15000000');
Query OK, 1 row affected (0.00 sec)
OK!

mysql> INSERT INTO TB_ORDER(id,title) VALUES(15000001,'goods15000001');
ERROR 1064 (HY000): can't find any valid datanode :TB_ORDER -> ID -> 1500 0001

image

rule="auto-sharding-long"

经过测试,我们发现,在往 TB_ORDER 表中插入数据时:

  • 如果id的值在1-500w之间,数据将会存储在第一个分片数据库中。

  • 如果id的值在500w-1000w之间,数据将会存储在第二个分片数据库中。

  • 如果id的值在1000w-1500w之间,数据将会存储在第三个分片数据库中。

  • 如果id的值超出1500w,在插入数据时,将会报错。

为什么会出现这种现象,数据到底落在哪一个分片服务器到底是如何决定的呢? 这是由逻辑表配置时的一个参数 rule 决定的,而这个参数配置的就是分片规则,关于分片规则的配置,在后面会详细讲解。

MyCat 配置文件讲解

schema.xml

schema.xml 作为MyCat中最重要的配置文件之一 , 涵盖了MyCat的逻辑库 、 逻辑表 、 分片规则、分片节点及数据源的配置。

image

主要包含以下三组标签:

  • schema标签
  • datanode标签
  • datahost标签

schema标签

  1. schema 定义逻辑库

image

schema 标签用于定义 MyCat实例中的逻辑库 , 一个MyCat实例中, 可以有多个逻辑库 , 可以通过 schema 标签来划分不同的逻辑库。MyCat中的逻辑库的概念,等同于MySQL中的database概念, 需要操作某个逻辑库下的表时, 也需要切换逻辑库(use xxx)。

核心属性:

  • name:指定自定义的逻辑库库名
  • checkSQLschema:在SQL语句操作时指定了数据库名称,执行时是否自动去除;true:自动去除,false:不自动去除
  • sqlMaxLimit:如果未指定limit进行查询,列表查询模式查询多少条记录
  1. schema 中的table定义逻辑表

image

table 标签定义了MyCat中逻辑库schema下的逻辑表 , 所有需要拆分的表都需要在table标签中定义 。

核心属性:

  • name:定义逻辑表表名,在该逻辑库下唯一
  • dataNode:定义逻辑表所属的dataNode,该属性需要与dataNode标签中name对应;多个dataNode逗号分隔
  • rule:分片规则的名字,分片规则名字是在rule.xml中定义的
  • primaryKey:逻辑表对应真实表的主键
  • type:逻辑表的类型,目前逻辑表只有全局表和普通表,如果未配置,就是普通表;全局表,配 置为 global

datanode标签

image

核心属性:

  • name:定义数据节点名称
  • dataHost:数据库实例主机名称,引用自 dataHost 标签中name属性
  • database:定义分片所属数据库

datahost标签

image

该标签在MyCat逻辑库中作为底层标签存在, 直接定义了具体的数据库实例、读写分离、心跳语句。

核心属性:

  • name:唯一标识,供上层标签使用
  • maxCon/minCon:最大连接数/最小连接数
  • balance:负载均衡策略,取值 0,1,2,3
  • writeType:写操作分发方式(0:写操作转发到第一个writeHost,第一个挂了,切换到第二个;1:写操作随机分发到配置的writeHost)
  • dbDriver:数据库驱动,支持 native、jdbc

rule.xml

rule.xml中定义所有拆分表的规则, 在使用过程中可以灵活的使用分片算法, 或者对同一个分片算法使用不同的参数, 它让分片过程可配置化。主要包含两类标签:tableRuleFunction

image

server.xml

server.xml配置文件包含了MyCat的系统配置信息,主要有两个重要的标签:system、user。

  1. system标签

image

主要配置MyCat中的系统配置信息,对应的系统配置项及其含义,如下:

属性取值含义
charsetutf8设置Mycat的字符集, 字符集需要与MySQL的字符集保持一致
nonePasswordLogin0,10为需要密码登陆、1为不需要密码登陆 ,默认为0,设置为1则需要指定默认账户
useHandshakeV100,1使用该选项主要的目的是为了能够兼容高版本的jdbc驱动, 是否采用HandshakeV10Packet来与client进行通信, 1:是, 0:否
useSqlStat0,1开启SQL实时统计, 1 为开启 , 0 为关闭 ;开启之后, MyCat会自动统计SQL语句的执行情况 ; mysql -h 127.0.0.1 -P 9066 -u root -p 查看MyCat执行的SQL, 执行效率比较低的SQL , SQL的整体执行情况、读写比例等 ; show @@sql ; show @@sql.slow ; show @@sql.sum ;
useGlobleTableCheck0,1是否开启全局表的一致性检测。1为开启 ,0为关闭 。
sqlExecuteTimeout1000SQL语句执行的超时时间 , 单位为 s ;
sequnceHandlerType0,1,2用来指定Mycat全局序列类型,0 为本地文件,1 为数据库方式,2 为时间戳列方式,默认使用本地文件方式,文件方式主要用于测试
sequnceHandlerPattern正则表达式必须带有MYCATSEQ或者 mycatseq进入序列匹配流程 注意MYCATSEQ_有空格的情况
subqueryRelationshipChecktrue,false子查询中存在关联查询的情况下,检查关联字段中是否有分片字段 .默认 false
useCompression0,1开启mysql压缩协议 , 0 : 关闭, 1 : 开启
fakeMySQLVersion5.5,5.6设置模拟的MySQL版本号
defaultSqlParser由于MyCat的最初版本使用了FoundationDB的SQL解析器, 在MyCat1.3后增加了Druid解析器, 所以要设置defaultSqlParser属性来指定默认的解析器; 解析器有两个 :druidparser 和 fdbparser, 在MyCat1.4之后,默认是druidparser,fdbparser已经废除了
processors1,2....指定系统可用的线程数量, 默认值为CPU核心x 每个核心运行线程数量; processors 会影响processorBufferPool,processorBufferLocalPercent,processorExecutor属性, 所有, 在性能调优时, 可以适当地修改processors值
processorBufferChunk指定每次分配Socket Direct Buffer默认值为4096字节, 也会影响BufferPool长度,如果一次性获取字节过多而导致buffer不够用, 则会出现警告, 可以调大该值
processorExecutor指定NIOProcessor上共享businessExecutor固定线程池的大小;
MyCat把异步任务交给 businessExecutor线程池中, 在新版本的MyCat中这个连接池使用频次不高, 可以适当地把该值调小
packetHeaderSize指定MySQL协议中的报文头长度, 默认4个字节
maxPacketSize指定MySQL协议可以携带的数据最大大小, 默认值为16M
idleTimeout30指定连接的空闲时间的超时长度;如果超时,将关闭资源并回收, 默认30分钟
txIsolation1,2,3,4初始化前端连接的事务隔离级别,默认为REPEATED_READ , 对应数字为3
READ_UNCOMMITED=1;READ_COMMITTED=2; REPEATED_READ=3;SERIALIZABLE=4;
sqlExecuteTimeout300执行SQL的超时时间, 如果SQL语句执行超时,
将关闭连接; 默认300秒;
serverPort8066定义MyCat的使用端口, 默认8066
managerPort9066定义MyCat的管理端口, 默认9066
  1. user标签

配置MyCat中的用户、访问密码,以及用户针对于逻辑库、逻辑表的权限信息,具体的权限描述方式及配置说明如下:

image

在测试权限操作时,我们只需要将 privileges 标签的注释放开。 在 privileges 下的schema标签中配置的dml属性配置的是逻辑库的权限。 在privileges的schema下的table标签的dml属性中配置逻辑表的权限。

MyCat 分片

垂直拆分

场景

在业务系统中, 涉及以下表结构 ,但是由于用户与订单每天都会产生大量的数据, 单台服务器的数据存储及处理能力是有限的, 可以对数据库表进行拆分, 原有的数据库表如下。

image

现在考虑将其进行垂直分库操作,将商品相关的表拆分到一个数据库服务器,订单表拆分的一个数据库服务器,用户及省市区表拆分到一个服务器。最终结构如下:

image

准备

准备三台服务器,IP地址如图所示:

image-20221107111200818

并且在192.168.91.166,192.168.91.167, 192.168.91.168上面创建数据库shopping。

配置

  1. schema.xml
  • 关键:注意好表应该配置在哪个服务器上
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<schema name="SHOPPING" checkSQLschema="true" sqlMaxLimit="100">
<table name="tb_goods_base" dataNode="dn1" primaryKey="id"/>
<table name="tb_goods_brand" dataNode="dn1" primaryKey="id"/>
<table name="tb_goods_cat" dataNode="dn1" primaryKey="id"/>
<table name="tb_goods_desc" dataNode="dn1" primaryKey="goods_id"/>
<table name="tb_goods_item" dataNode="dn1" primaryKey="id"/>

<table name="tb_order_item" dataNode="dn2" primaryKey="id" />
<table name="tb_order_master" dataNode="dn2" primaryKey="order_id" />
<table name="tb_order_pay_log" dataNode="dn2" primaryKey="out_trade_no" />

<table name="tb_user" dataNode="dn3" primaryKey="id" />
<table name="tb_user_address" dataNode="dn3" primaryKey="id" />
<table name="tb_areas_provinces" dataNode="dn3" primaryKey="id"/>
<table name="tb_areas_city" dataNode="dn3" primaryKey="id"/>
<table name="tb_areas_region" dataNode="dn3" primaryKey="id"/>

</schema>

<dataNode name="dn1" dataHost="dhost1" database="shopping"/>
<dataNode name="dn2" dataHost="dhost2" database="shopping"/>
<dataNode name="dn3" dataHost="dhost3" database="shopping"/>

<dataHost name="dhost1" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.91.166:3306?useSSL=false&amp;serverTimezone=Asia/Shanghai&amp;characterEncoding=utf8" user="root" password="123456"/>
</dataHost>
<dataHost name="dhost2" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.91.167:3306?useSSL=false&amp;serverTimezone=Asia/Shanghai&amp;characterEncoding=utf8" user="root" password="123456"/>
</dataHost>
<dataHost name="dhost3" maxCon="1000" minCon="10" balance="0" writeType="0" dbType="mysql" dbDriver="jdbc" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="master" url="jdbc:mysql://192.168.91.168:3306?useSSL=false&amp;serverTimezone=Asia/Shanghai&amp;characterEncoding=utf8" user="root" password="123456"/>
</dataHost>
</mycat:schema>
  1. server.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
<user name="root" defaultAccount="true">
<property name="password">123456</property>
<property name="schemas">SHOPPING</property> <!--只需要修改这里-->
<!-- 表级 DML 权限设置 -->
<!--
<privileges check="true">
<schema name="DB01" dml="0110" >
<table name="TB_ORDER" dml="1110"></table>
</schema>
</privileges>
-->
</user>
<user name="user">
<property name="password">123456</property>
<property name="schemas">SHOPPING</property>
<property name="readOnly">true</property>
</user>

查看数据库是否创建成功

1
2
3
4
mysql -h 192.168.91.166 -P 8066 -U root -p
show databases;
use SHOPPING;
show tables; 即可以查看所有逻辑表

测试

  1. 上传测试SQL脚本到服务器的/root目录
1
2
-rw-r--r--  1 root root    233274 10月  7 16:03 shopping-insert.sql
-rw-r--r-- 1 root root 9194 10月 7 16:03 shopping-table.sql
  1. 执行指令导入测试数据

重新启动MyCat后,在mycat的命令行中,通过source指令导入表结构,以及对应的数据,查看数据分布情况。

将表结构及对应的测试数据导入之后,可以检查一下各个数据库服务器中的表结构分布情况。 检查是否和我们准备工作中规划的服务器一致。

image

  1. 查询用户的收件人及收件人地址信息(包含省、市、区)。

在MyCat的命令行中,当我们执行以下多表联查的SQL语句时,可以正常查询出数据。

1
2
3
select ua.user_id, ua.contact, p.province, c.city, r.area , ua.address 
from tb_user_address ua ,tb_areas_city c , tb_areas_provinces p ,tb_areas_region r
where ua.province_id = p.provinceid and ua.city_id = c.cityid and ua.town_id = r.areaid ;
1
2
3
4
5
6
7
8
9
10
11
12
mysql> select ua.user_id, ua.contact, p.province, c.city, r.area , ua.address from tb_user_address ua ,tb_areas_city c , tb_areas_provinces p ,tb_areas_region r where ua.province_id = p.provinceid and ua.city_id = c.cityid and ua.town_id = r.areaid ;
+-----------+-----------+-----------+-----------+-----------+--------------------+
| user_id | contact | province | city | area | address |
+-----------+-----------+-----------+-----------+-----------+--------------------+
| deng | 叶问 | 北京市 | 市辖区 | 西城区 | 咏春武馆总部 |
| deng | 李小龙 | 北京市 | 市辖区 | 崇文区 | 永春武馆 |
| java00001 | 李佳红 | 北京市 | 市辖区 | 崇文区 | 修正大厦 |
| zhaoliu | 赵三 | 北京市 | 市辖区 | 宣武区 | 西直门 |
| java00001 | 李佳星 | 北京市 | 市辖区 | 朝阳区 | 中腾大厦 |
| java00001 | 李嘉诚 | 北京市 | 市辖区 | 朝阳区 | 金燕龙办公楼 |
+-----------+-----------+-----------+-----------+-----------+--------------------+
6 rows in set (0.08 sec)
  1. 查询每一笔订单及订单的收件地址信息(包含省、市、区)。
1
2
3
SELECT order_id , payment ,receiver, province , city , area 
FROM tb_order_master o, tb_areas_provinces p , tb_areas_city c , tb_areas_region r
WHERE o.receiver_province = p.provinceid AND o.receiver_city = c.cityid AND o.receiver_region = r.areaid ;

但是现在存在一个问题,订单相关的表结构是在 192.168.91.167 数据库服务器中,而省市区的数据库表是在 192.168.91.168 数据库服务器中。那么在MyCat中执行是否可以成功呢?

1
2
3
mysql> SELECT order_id , payment ,receiver, province , city , area FROM tb_order_master o, tb_areas_provinces p , tb_areas_city c , tb_areas_region r WHERE o.receiver_province = p.provinceid AND o.receiver_city = c.cityid AND o.receiver_region = r.areaid ;

ERROR 1064 (HY000): invalid route in sql, multi tables found but datanode has no intersection sql:SELECT order_id , payment ,receiver, province , city , area FROM tb_order_master o, tb_areas_provinces p , tb_areas_city c , tb_areas_region r WHERE o.receiver_province = p.provinceid AND o.receiver_city = c.cityid AND o.receiver_region = r.areaid

经过测试,我们看到,SQL语句执行报错。原因就是因为MyCat在执行该SQL语句时,需要往具体的数据库服务器中路由,而当前没有一个数据库服务器完全包含了订单以及省市区的表结构,造成SQL语句失败,报错。

对于上述的这种现象,我们如何来解决呢? 下面我们介绍的全局表,就可以轻松解决这个问题。

全局表

对于省、市、区/县表tb_areas_provinces , tb_areas_city , tb_areas_region,是属于数据字典表,在多个业务模块中都可能会遇到,可以将其设置为全局表,利于业务操作。

修改schema.xml中的逻辑表的配置,修改 tb_areas_provinces、tb_areas_city、tb_areas_region 三个逻辑表,增加 type 属性,配置为global,就代表该表是全局表,就会在所涉及到的dataNode中创建给表。对于当前配置来说,也就意味着所有的节点中都有该表了。

1
2
3
<table name="tb_areas_provinces" dataNode="dn1,dn2,dn3" primaryKey="id" type="global"/>
<table name="tb_areas_city" dataNode="dn1,dn2,dn3" primaryKey="id" type="global"/>
<table name="tb_areas_region" dataNode="dn1,dn2,dn3" primaryKey="id" type="global"/>

image

配置完毕后,重新启动MyCat。

  1. 删除原来每一个数据库服务器中的所有表结构
  2. 通过source指令,导入表及数据
1
2
source /root/shopping-table.sql
source /root/shopping-insert.sql
  1. 检查每一个数据库服务器中的表及数据分布,看到三个节点中都有这三张全局表
  2. 然后再次执行上面的多表联查的SQL语句
1
SELECT order_id , payment ,receiver, province , city , area FROM tb_order_master o, tb_areas_provinces p , tb_areas_city c , tb_areas_region r WHERE o.receiver_province = p.provinceid AND o.receiver_city = c.cityid AND o.receiver_region = r.areaid ;

image

是可以正常执行成功的。

  1. 当在MyCat中更新全局表的时候,我们可以看到,所有分片节点中的数据都发生了变化,每个节点的全局表数据时刻保持一致。

水平拆分

场景

在业务系统中, 有一张表(日志表), 业务系统每天都会产生大量的日志数据 , 单台服务器的数据存储及处理能力是有限的, 可以对数据库表进行拆分。

image

准备

准备三台服务器,具体的结构如下:

image

并且,在三台数据库服务器中分表创建一个数据库itcast。

配置

  1. schema.xml
1
2
3
4
5
6
7
<schema name="ITCAST" checkSQLschema="true" sqlMaxLimit="100">
<table name="tb_log" dataNode="dn4,dn5,dn6" primaryKey="id" rule="mod-long" /><!--mod-long求模分配-->
</schema>

<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />

tb_log表最终落在3个节点中,分别是 dn4、dn5、dn6 ,而具体的数据分别存储在 dhost1、dhost2、dhost3的itcast数据库中。

  1. server.xml

配置root用户既可以访问 SHOPPING 逻辑库,又可以访问ITCAST逻辑库。

1
2
3
4
5
6
7
8
9
10
11
12
<user name="root" defaultAccount="true">
<property name="password">123456</property>
<property name="schemas">SHOPPING,ITCAST</property>
<!-- 表级 DML 权限设置 -->
<!--
<privileges check="true">
<schema name="DB01" dml="0110" >
<table name="TB_ORDER" dml="1110"></table>
</schema>
</privileges>
-->
</user>

测试

配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
CREATE TABLE tb_log (
id bigint(20) NOT NULL COMMENT 'ID',
model_name varchar(200) DEFAULT NULL COMMENT '模块名',
model_value varchar(200) DEFAULT NULL COMMENT '模块值',
return_value varchar(200) DEFAULT NULL COMMENT '返回值',
return_class varchar(200) DEFAULT NULL COMMENT '返回值类型',
operate_user varchar(20) DEFAULT NULL COMMENT '操作用户',
operate_time varchar(20) DEFAULT NULL COMMENT '操作时间',
param_and_value varchar(500) DEFAULT NULL COMMENT '请求参数名及参数值',
operate_class varchar(200) DEFAULT NULL COMMENT '操作类',
operate_method varchar(200) DEFAULT NULL COMMENT '操作方法',
cost_time bigint(20) DEFAULT NULL COMMENT '执行方法耗时, 单位 ms',
source int(1) DEFAULT NULL COMMENT '来源 : 1 PC , 2 Android , 3 IOS',
PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,operate_user, operate_time, param_and_value, operate_class,operate_method,cost_time,source) VALUES('1','user','insert','success','java.lang.String','10001','2022-01-06 18:12:28','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.controller.UserController','insert','10',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class, operate_user, operate_time, param_and_value, operate_class, operate_method,cost_time,source)VALUES('2','user','insert','success','java.lang.String','10001','2022-01-06 18:12:27','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.controller.UserController','insert','23',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class,operate_user, operate_time, param_and_value, operate_class, operate_method,cost_time,source)VALUES('3','user','update','success','java.lang.String','10001','2022-01-06 18:16:45','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.controller.UserController','update','34',1);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class, operate_user, operate_time, param_and_value, operate_class, operate_method, cost_time,source)VALUES('4','user','update','success','java.lang.String','10001','2022-01-06 18:16:45','{\"age\":\"20\",\"name\":\"Tom\",\"gender\":\"1\"}','cn.itcast.controller.UserController','update','13',2);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class, operate_user, operate_time, param_and_value, operate_class, operate_method, cost_time,source) VALUES('5','user','insert','success','java.lang.String','10001','2022-01-06 18:30:31','{\"age\":\"200\",\"name\":\"TomCat\",\"gender\":\"0\"}','cn.itcast.controller.UserController','insert','29',3);
INSERT INTO tb_log (id, model_name, model_value, return_value, return_class, operate_user, operate_time, param_and_value, operate_class, operate_method, cost_time,source)VALUES('6','user','find','success','java.lang.String','10001','2022-01-06 18:30:31','{\"age\":\"200\",\"name\":\"TomCat\",\"gender\":\"0\"}','cn.itcast.controller.UserController','find','29',2);

image

取模,id%(节点总数),结果为0落在第一个节点。结果为1落在第二个节点。结果为2落在第三个节点。

分片规则rule.xml

范围分片

  1. 介绍

根据指定的字段及其配置的范围与数据节点的对应情况, 来决定该数据属于哪一个分片。

image

  1. 配置

schema.xml逻辑表配置:

1
<table name="TB_ORDER" dataNode="dn1,dn2,dn3" rule="auto-sharding-long" />

schema.xml数据节点配置:

1
2
3
<dataNode name="dn1" dataHost="dhost1" database="db01" />
<dataNode name="dn2" dataHost="dhost2" database="db01" />
<dataNode name="dn3" dataHost="dhost3" database="db01" />

rule.xml分片规则配置:

1
2
3
4
5
6
7
8
9
10
11
<tableRule name="auto-sharding-long">
<rule>
<columns>id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>

<function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
<property name="defaultNode">0</property>
</function>

分片规则配置属性含义:

属性描述
columns标识将要分片的表字段
algorithm指定分片函数与function的对应关系
class指定该分片算法对应的类
mapFile对应的外部配置文件
type默认值为0 ; 0 表示Integer , 1 表示String
defaultNode默认节点 默认节点的所用:枚举分片时,如果碰到不识别的枚举值, 就让它路由到默认节点 ; 如果没有默认值,碰到不识别的则报错 。

在rule.xml中配置分片规则时,关联了一个映射配置文件 autopartition-long.txt,该配置文件的配置如下:

1
2
3
4
5
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2

含义:0-500万之间的值,存储在0号数据节点(数据节点的索引从0开始) ; 500万-1000万之间的数据存储在1号数据节点 ; 1000万-1500万的数据节点存储在2号节点 ;

该分片规则,主要是针对于数字类型的字段适用。 在MyCat的入门程序中,我们使用的就是该分片规则。

image-20221107125417703

取模分片

  1. 介绍

根据指定的字段值与节点数量进行求模运算,根据运算结果, 来决定该数据属于哪一个分片。

image

  1. 配置

schema.xml逻辑表配置:

1
<table name="tb_log" dataNode="dn4,dn5,dn6" primaryKey="id" rule="mod-long" />

schema.xml数据节点配置:

1
2
3
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />

rule.xml分片规则配置:

1
2
3
4
5
6
7
8
9
10
<tableRule name="mod-long">
<rule>
<columns>id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>

<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<property name="count">3</property>
</function>

分片规则属性说明如下:

属性描述
columns标识将要分片的表字段
algorithm指定分片函数与function的对应关系
class指定该分片算法对应的类
count数据节点的数量

该分片规则,主要是针对于数字类型的字段适用。 在前面水平拆分的演示中,我们选择的就是取模分片。

  1. 测试

配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

一致性hash分片

  1. 介绍

所谓一致性哈希,相同的哈希因子计算值总是被划分到相同的分区表中,不会因为分区节点的增加而改变原来数据的分区位置,有效的解决了分布式数据的拓容问题。

image

  1. 配置

schema.xml中逻辑表配置:

1
2
<!-- 一致性hash -->
<table name="tb_order" dataNode="dn4,dn5,dn6" rule="sharding-by-murmur" />

schema.xml中数据节点配置:

1
2
3
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />

rule.xml中分片规则配置:

{10}
1
2
3
4
5
6
7
8
9
10
11
12
<tableRule name="sharding-by-murmur">
<rule>
<columns>id</columns>
<algorithm>murmur</algorithm>
</rule>
</tableRule>

<function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash">
<property name="seed">0</property><!-- 默认是0 -->
<property name="count">3</property>
<property name="virtualBucketTimes">160</property>
</function>

分片规则属性含义:

属性描述
columns标识将要分片的表字段
algorithm指定分片函数与function的对应关系
class指定该分片算法对应的类
seed创建murmur_hash对象的种子,默认0
count要分片的数据库节点数量,必须指定,否则没法分片
virtualBucketTimes一个实际的数据库节点被映射为这么多虚拟节点,默认是160倍,也就是虚拟节点数是物理节点数的160倍;virtualBucketTimes*count就是虚拟结点数量 ;
weightMapFile节点的权重,没有指定权重的节点默认是1。以properties文件的格式填写,以从0开始到count-1的整数值也就是节点索引为key,以节点权重值为值。所有权重值必须是正整数,否则以1代替
bucketMapPath用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的murmur hash值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西
  1. 测试

配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
create table tb_order(
id varchar(100) not null primary key,
money int null,
content varchar(200) null
);
INSERT INTO tb_order (id, money, content) VALUES ('b92fdaaf-6fc4-11ec-b831- 482ae33c4a2d', 10, 'b92fdaf8-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93482b6-6fc4-11ec-b831-482ae33c4a2d', 20, 'b93482d5-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b937e246-6fc4-11ec-b831-482ae33c4a2d', 50, 'b937e25d-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93be2dd-6fc4-11ec-b831-482ae33c4a2d', 100, 'b93be2f9-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b93f2d68-6fc4-11ec-b831-482ae33c4a2d', 130, 'b93f2d7d-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9451b98-6fc4-11ec-b831-482ae33c4a2d', 30, 'b9451bcc-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9488ec1-6fc4-11ec-b831-482ae33c4a2d', 560, 'b9488edb-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b94be6e6-6fc4-11ec-b831-482ae33c4a2d', 10, 'b94be6ff-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b94ee10d-6fc4-11ec-b831-482ae33c4a2d', 123, 'b94ee12c-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b952492a-6fc4-11ec-b831-482ae33c4a2d', 145, 'b9524945-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95553ac-6fc4-11ec-b831-482ae33c4a2d', 543, 'b95553c8-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9581cdd-6fc4-11ec-b831-482ae33c4a2d', 17, 'b9581cfa-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95afc0f-6fc4-11ec-b831-482ae33c4a2d', 18, 'b95afc2a-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b95daa99-6fc4-11ec-b831-482ae33c4a2d', 134, 'b95daab2-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b9667e3c-6fc4-11ec-b831-482ae33c4a2d', 156, 'b9667e60-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b96ab489-6fc4-11ec-b831-482ae33c4a2d', 175, 'b96ab4a5-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b96e2942-6fc4-11ec-b831-482ae33c4a2d', 180, 'b96e295b-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b97092ec-6fc4-11ec-b831-482ae33c4a2d', 123, 'b9709306-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b973727a-6fc4-11ec-b831-482ae33c4a2d', 230, 'b9737293-6fc4-11ec-b831-482ae33c4a2d');
INSERT INTO tb_order (id, money, content) VALUES ('b978840f-6fc4-11ec-b831-482ae33c4a2d', 560, 'b978843c-6fc4-11ec-b831-482ae33c4a2d');
  • 落在第一个节点的数据

image

  • 落在第二个节点的数据

image

  • 落在第三个节点的数据

image

枚举分片

  1. 介绍

通过在配置文件中配置可能的枚举值, 指定数据分布到不同数据节点上, 本规则适用于按照省份、性别、状态拆分数据等业务

image

  1. 配置

image-20221107130645731

schema.xml中逻辑表配置:

1
2
<!-- 枚举 -->
<table name="tb_user" dataNode="dn4,dn5,dn6" rule="sharding-by-intfile-enumstatus"/>

schema.xml中数据节点配置:

1
2
3
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />

rule.xml中分片规则配置:

{17}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
<tableRule name="sharding-by-intfile">
<rule>
<columns>sharding_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>

<!-- 自己增加 tableRule -->
<tableRule name="sharding-by-intfile-enumstatus">
<rule>
<columns>status</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>

<function name="hash-int" class="io.mycat.route.function.PartitionByFileMap">
<property name="defaultNode">2</property>
<property name="mapFile">partition-hash-int.txt</property>
</function>

partition-hash-int.txt ,内容如下 :

1
2
3
1=0
2=1
3=2

分片规则属性含义:

属性描述
columns标识将要分片的表字段
algorithm指定分片函数与function的对应关系
class指定该分片算法对应的类
mapFile对应的外部配置文件
type默认值为0 ; 0 表示Integer , 1 表示String
defaultNode默认节点 ; 小于0 标识不设置默认节点 , 大于等于0代表设置默认节点 ;默认节点的所用:枚举分片时,如果碰到不识别的枚举值, 就让它路由到默认节点 ; 如果没有默认值,碰到不识别的则报错 。
  1. 测试

配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CREATE TABLE tb_user (
id bigint(20) NOT NULL COMMENT 'ID',
username varchar(200) DEFAULT NULL COMMENT '姓名',
status int(2) DEFAULT '1' COMMENT '1: 未启用, 2: 已启用, 3: 已关闭',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

insert into tb_user (id,username ,status) values(1,'Tom',1);
insert into tb_user (id,username ,status) values(2,'Cat',2);
insert into tb_user (id,username ,status) values(3,'Rose',3);
insert into tb_user (id,username ,status) values(4,'Coco',2);
insert into tb_user (id,username ,status) values(5,'Lily',1);
insert into tb_user (id,username ,status) values(6,'Tom',1);
insert into tb_user (id,username ,status) values(7,'Cat',2);
insert into tb_user (id,username ,status) values(8,'Rose',3);
insert into tb_user (id,username ,status) values(9,'Coco',2);
insert into tb_user (id,username ,status) values(10,'Lily',1);
  • 落在第一个节点上的数据:

image

  • 落在第二个节点上的数据

image

  • 落在第三个节点上的数据

image

应用指定算法

  1. 介绍

运行阶段由应用自主决定路由到那个分片 , 直接根据字符子串(必须是数字)计算分片号。

  1. 配置

schema.xml中逻辑表配置:

1
2
<!-- 应用指定算法 -->
<table name="tb_app" dataNode="dn4,dn5,dn6" rule="sharding-by-substring" />

schema.xml中数据节点配置:

1
2
3
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />

rule.xml中分片规则配置:

1
2
3
4
5
6
7
8
9
10
11
12
<tableRule name="sharding-by-substring">
<rule>
<columns>id</columns>
<algorithm>sharding-by-substring</algorithm>
</rule>
</tableRule>
<function name="sharding-by-substring" class="io.mycat.route.function.PartitionDirectBySubString">
<property name="startIndex">0</property> <!-- zero-based -->
<property name="size">2</property>
<property name="partitionCount">3</property>
<property name="defaultPartition">0</property>
</function>

分片规则属性含义:

属性描述
columns标识将要分片的表字段
algorithm指定分片函数与function的对应关系
class指定该分片算法对应的类
startIndex字符子串起始索引
size字符长度
partitionCount分区(分片)数量
defaultPartition默认分片(在分片数量定义时, 字符标示的分片编号不在分片数量内时,使用默认分片)

示例说明 :

id=05-100000002 , 在此配置中代表根据id中从 startIndex=0,开始,截取siz=2位数字即05,05就是获取的分区,如果没找到对应的分片则默认分配到defaultPartition 。

  1. 测试

配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

1
2
3
4
5
6
7
8
9
10
11
CREATE TABLE tb_app (
id varchar(10) NOT NULL COMMENT 'ID',
name varchar(200) DEFAULT NULL COMMENT '名称',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

insert into tb_app (id,name) values('0000001','Testx00001');
insert into tb_app (id,name) values('0100001','Test100001');
insert into tb_app (id,name) values('0100002','Test200001');
insert into tb_app (id,name) values('0200001','Test300001');
insert into tb_app (id,name) values('0200002','TesT400001');
  • 落在第一个节点的数据
image
  • 落在第二个节点的数据
image
  • 落在第三个节点的数据
image

固定分片hash算法

  1. 介绍

该算法类似于十进制的求模运算,但是为二进制的操作,例如,取 id 的二进制低 10 位 与1111111111 进行位 & 运算,位与运算最小值为0000000000,最大值为1111111111,转换为十进制,也就是位于0-1023之间。

image

特点:

  • 如果是求模,连续的值,分别分配到各个不同的分片;但是此算法会将连续的值可能分配到相同的分片,降低事务处理的难度。
  • 可以均匀分配,也可以非均匀分配。
  • 分片字段必须为数字类型。
  1. 配置
image-20221107151501464

schema.xml中逻辑表配置:

1
2
<!-- 固定分片hash算法 -->
<table name="tb_longhash" dataNode="dn4,dn5,dn6" rule="sharding-by-long-hash" />

schema.xml中数据节点配置:

1
2
3
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />

rule.xml中分片规则配置:

1
2
3
4
5
6
7
8
9
10
11
12
<tableRule name="sharding-by-long-hash">
<rule>
<columns>id</columns>
<algorithm>sharding-by-long-hash</algorithm>
</rule>
</tableRule>

<!-- 分片总长度为1024,count与length数组长度必须一致; -->
<function name="sharding-by-long-hash" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">2,1</property>
<property name="partitionLength">256,512</property>
</function>

分片规则属性含义:

属性描述
columns标识将要分片的表字段名
algorithm指定分片函数与function的对应关系
class指定该分片算法对应的类
partitionCount分片个数列表
partitionLength分片范围列表

约束 :

  1. 分片长度 : 默认最大2^10 , 为 1024 ;
  2. count, length的数组长度必须是一致的 ;

以上分为三个分区:0-255,256-511,512-1023

示例说明 :

image

  1. 测试

配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
CREATE TABLE tb_longhash (
id int(11) NOT NULL COMMENT 'ID',
name varchar(200) DEFAULT NULL COMMENT '名称',
firstChar char(1) COMMENT '首字母',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

insert into tb_longhash (id,name,firstChar) values(1,'七匹狼','Q');
insert into tb_longhash (id,name,firstChar) values(2,'八匹狼','B');
insert into tb_longhash (id,name,firstChar) values(3,'九匹狼','J');
insert into tb_longhash (id,name,firstChar) values(4,'十匹狼','S');
insert into tb_longhash (id,name,firstChar) values(5,'六匹狼','L');
insert into tb_longhash (id,name,firstChar) values(6,'五匹狼','W');
insert into tb_longhash (id,name,firstChar) values(7,'四匹狼','S');
insert into tb_longhash (id,name,firstChar) values(8,'三匹狼','S');
insert into tb_longhash (id,name,firstChar) values(9,'两匹狼','L');
  • 落在第一个节点的数据
image
  • 落在第二个节点的数据
image
  • 落在第三个节点的数据
image

字符串hash解析算法

  1. 介绍

截取字符串中的指定位置的子字符串, 进行hash算法, 算出分片。

image

  1. 配置

image-20221107153151793

schema.xml中逻辑表配置:

1
2
<!-- 字符串hash解析算法 -->
<table name="tb_strhash" dataNode="dn4,dn5" rule="sharding-by-stringhash" />

schema.xml中数据节点配置:

1
2
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />

rule.xml中分片规则配置:

1
2
3
4
5
6
7
8
9
10
11
12
<tableRule name="sharding-by-stringhash">
<rule>
<columns>name</columns>
<algorithm>sharding-by-stringhash</algorithm>
</rule>
</tableRule>

<function name="sharding-by-stringhash" class="io.mycat.route.function.PartitionByString">
<property name="partitionLength">512</property> <!-- zero-based -->
<property name="partitionCount">2</property>
<property name="hashSlice">0:2</property>
</function>

分片规则属性含义:

属性含义
columns标识将要分片的表字段
algorithm指定分片函数与function的对应关系
class指定该分片算法对应的类
partitionLengthhash求模基数 ; length*count=1024 (出于性能考虑)
partitionCount分区数
hashSlicehash运算位 , 根据子字符串的hash运算 ; 0 代表 str.length(), -1 代表 str.length()-1 , 大于0只代表数字自身 ; 可以理解为substring(start,end),start为0则只表示0

示例说明:

image

  1. 测试

配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

1
2
3
4
5
6
7
8
9
10
create table tb_strhash(
name varchar(20) primary key,
content varchar(100)
)engine=InnoDB DEFAULT CHARSET=utf8mb4;

INSERT INTO tb_strhash (name,content) VALUES('T1001', UUID());
INSERT INTO tb_strhash (name,content) VALUES('ROSE', UUID());
INSERT INTO tb_strhash (name,content) VALUES('JERRY', UUID());
INSERT INTO tb_strhash (name,content) VALUES('CRISTINA', UUID());
INSERT INTO tb_strhash (name,content) VALUES('TOMCAT', UUID());
  • 落在第一个节点的数据

image

  • 落在第二个节点的数据

image

按天分片算法

  1. 介绍

按照日期及对应的时间周期来分片。

image

  1. 配置

schema.xml中逻辑表配置:

1
2
<!-- 按天分片 -->
<table name="tb_datepart" dataNode="dn4,dn5,dn6" rule="sharding-by-date" />

schema.xml中数据节点配置:

1
2
3
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />

rule.xml中分片规则配置:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
<tableRule name="sharding-by-date">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-date</algorithm>
</rule>
</tableRule>

<function name="sharding-by-date" class="io.mycat.route.function.PartitionByDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2022-01-01</property>
<property name="sEndDate">2022-01-30</property>
<property name="sPartionDay">10</property>
</function>
<!--
从开始时间开始,每10天为一个分片,到达结束时间之后,会重复开始分片插入
配置表的 dataNode 的分片,必须和分片规则数量一致,例如 2022-01-01 到 2022-12-31 ,每
10天一个分片,一共需要37个分片。
-->

分片规则属性含义:

属性描述
columns标识将要分片的表字段
algorithm指定分片函数与function的对应关系
class指定该分片算法对应的类
dateFormat日期格式
sBeginDate开始日期
sEndDate结束日期,如果配置了结束日期,则代码数据到达了这个日期的分片后,会重复从开始分片插入
sPartionDay分区天数,默认值 10 ,从开始日期算起,每个10天一个分区
  1. 测试

配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

1
2
3
4
5
6
7
8
9
10
11
12
13
create table tb_datepart(
id bigint not null comment 'ID' primary key,
name varchar(100) null comment '姓名',
create_time date null
);

insert into tb_datepart(id,name ,create_time) values(1,'Tom','2022-01-01');
insert into tb_datepart(id,name ,create_time) values(2,'Cat','2022-01-10');
insert into tb_datepart(id,name ,create_time) values(3,'Rose','2022-01-11');
insert into tb_datepart(id,name ,create_time) values(4,'Coco','2022-01-20');
insert into tb_datepart(id,name ,create_time) values(5,'Rose2','2022-01-21');
insert into tb_datepart(id,name ,create_time) values(6,'Coco2','2022-01-30');
insert into tb_datepart(id,name ,create_time) values(7,'Coco3','2022-01-31');
  • 落在第一个节点的数据

image

  • 落在第二个节点的数据

image

  • 落在第三个节点的数据

image

自然月分片

  1. 介绍

使用场景为按照月份来分片, 每个自然月为一个分片。

image

  1. 配置

schema.xml中逻辑表配置:

1
2
<!-- 按自然月分片 -->
<table name="tb_monthpart" dataNode="dn4,dn5,dn6" rule="sharding-by-month" />

schema.xml中数据节点配置:

1
2
3
<dataNode name="dn4" dataHost="dhost1" database="itcast" />
<dataNode name="dn5" dataHost="dhost2" database="itcast" />
<dataNode name="dn6" dataHost="dhost3" database="itcast" />

rule.xml中分片规则配置:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<tableRule name="sharding-by-month">
<rule>
<columns>create_time</columns>
<algorithm>partbymonth</algorithm>
</rule>
</tableRule>
<function name="partbymonth" class="io.mycat.route.function.PartitionByMonth">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2022-01-01</property>
<property name="sEndDate">2022-03-31</property>
</function>
<!--
从开始时间开始,一个月为一个分片,到达结束时间之后,会重复开始分片插入
配置表的 dataNode 的分片,必须和分片规则数量一致,例如 2022-01-01 到 2022-12-31 ,一
共需要12个分片。(超过指定的时间会从头开始分片)
-->

分片规则属性含义:

属性描述
columns标识将要分片的表字段
algorithm指定分片函数与function的对应关系
class指定该分片算法对应的类
dateFormat日期格式
sBeginDate开始日期
sEndDate结束日期,如果配置了结束日期,则代码数据到达了这个日期的分片后,会重复从开始分片插入
  1. 测试

配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
create table tb_monthpart(
id bigint not null comment 'ID' primary key,
name varchar(100) null comment '姓名',
create_time date null
);

insert into tb_monthpart(id,name ,create_time) values(1,'Tom','2022-01-01');
insert into tb_monthpart(id,name ,create_time) values(2,'Cat','2022-01-10');
insert into tb_monthpart(id,name ,create_time) values(3,'Rose','2022-01-31');
insert into tb_monthpart(id,name ,create_time) values(4,'Coco','2022-02-20');
insert into tb_monthpart(id,name ,create_time) values(5,'Rose2','2022-02-25');
insert into tb_monthpart(id,name ,create_time) values(6,'Coco2','2022-03-10');
insert into tb_monthpart(id,name ,create_time) values(7,'Coco3','2022-03-31');
insert into tb_monthpart(id,name ,create_time) values(8,'Coco4','2022-04-10');
insert into tb_monthpart(id,name ,create_time) values(9,'Coco5','2022-04-30');
  • 落在第一个节点的数据

image

  • 落在第二个节点的数据

image

  • 落在第三个节点的数据

image

MyCat 管理及监控

MyCat 原理

image

在MyCat中,当执行一条SQL语句时,MyCat需要进行SQL解析、分片分析、路由分析、读写分离分析等操作,最终经过一系列的分析决定将当前的SQL语句到底路由到那几个(或哪一个)节点数据库,数据库将数据执行完毕后,如果有返回的结果,则将结果返回给MyCat,最终还需要在MyCat中进行结果合并、聚合处理、排序处理、分页处理等操作,最终再将结果返回给客户端。

而在MyCat的使用过程中,MyCat官方也提供了一个管理监控平台MyCat-Web(MyCat-eye)。Mycat-web 是 Mycat 可视化运维的管理和监控平台,弥补了 Mycat 在监控上的空白。帮 Mycat分担统计任务和配置管理任务。Mycat-web 引入了 ZooKeeper 作为配置中心,可以管理多个节点。Mycat-web 主要管理和监控 Mycat 的流量、连接、活动线程和内存等,具备 IP 白名单、邮件告警等模块,还可以统计 SQL 并分析慢 SQL 和高频 SQL 等。为优化 SQL 提供依据。

MyCat 管理

Mycat默认开通2个端口,可以在server.xml中进行修改。

  • 8066 数据访问端口,即进行 DML 和 DDL 操作。
  • 9066 数据库管理端口,即 mycat 服务管理控制功能,用于管理mycat的整个集群状态

连接MyCat的管理控制台:

1
mysql -h 192.168.91.166 -p9066 -u root -p 123456
命令含义
show @@help查看Mycat管理工具帮助文档
show @@version查看Mycat的版本
reload @@config重新加载Mycat的配置文件
show @@datasource查看Mycat的数据源信息
show @@datanode查看MyCat现有的分片节点信息
show @@threadpool查看Mycat的线程池信息
show @@sql查看执行的SQL
show @@sql.sum查看执行的SQL统计

MyCat-eye

介绍

Mycat-web(Mycat-eye)是对mycat-server提供监控服务,功能不局限于对mycat-server使用。他通过JDBC连接对Mycat、Mysql监控,监控远程服务器(目前仅限于linux系统)的cpu、内存、网络、磁盘。

Mycat-eye运行过程中需要依赖zookeeper,因此需要先安装zookeeper。

安装

  1. zookeeper安装,上传安装包

  1. 解压
1
tar -zxvf zookeeper-3.4.6.tar.gz -C /usr/local/
  1. 创建数据存放目录
1
2
cd /usr/local/zookeeper-3.4.6/
mkdir data
  1. 修改配置文件名称并配置
1
2
cd conf
mv zoo_sample.cfg zoo.cfg
  1. 配置数据存放目录
1
dataDir=/usr/local/zookeeper-3.4.6/data
  1. 启动Zookeeper
1
2
3
bin/zkServer.sh start

bin/zkServer.sh status
  1. mycat-web安装包已经上传过了,解压
1
2
cd /opt/Mycat/
tar -zxvf Mycat-web.tar.gz -C /usr/local/
  1. 目录介绍
1
2
3
4
5
6
etc         ----> jetty配置文件
lib ----> 依赖jar包
mycat-web ----> mycat-web项目
readme.txt
start.jar ----> 启动jar
start.sh ----> linux启动脚本
  1. 启动mycat-web
1
sh start.sh

10 .访问

http://192.168.91.166:8082/mycat

::: tip 备注

如果Zookeeper与Mycat-web不在同一台服务器上 , 需要设置Zookeeper的地址 ; 在/usr/local/mycat-web/mycat-web/WEB-INF/classes/mycat.properties文件中配置 :

1
zookeepr=localhost:2181 #进行修改

:::

  1. 访问测试

image

配置

  1. 开始MyCat的实时统计功能
1
<property name="useSqlStat">1</property> <!-- 1为开启实时统计、0为关闭 -->
  1. 在Mycat监控界面配置服务地址

image

测试

配置好了之后,我们可以通过MyCat执行一系列的增删改查的测试,然后过一段时间之后,打开mycat-eye的管理界面,查看mycat-eye监控到的数据信息。

A. 性能监控

image

B. 物理节点

image

C. SQL统计

image

D. SQL表分析

image

E. SQL监控

image

F. 高频SQL

image